[텐서플로우로 시작하는 딥러닝 기초] Lab 02: Simple Linear Regression 를 TensorFlow 로 구현하기
import tensorflow as tf x_data = [1, 2, 3, 4, 5] y_data = [1, 2, 3, 4, 5] W = tf.Variable(2.9) b = tf.Variable(0.5) # hypothesis = W*x+b hypothesis = W*x_data+b #cost(W,b) cost = tf.reduce_mean(tf.square(hypothesis - y_data)) reduce_mean 은 평균을 내는 함수인데 reduce는 차원의 감소를 의미한다. cost를 최소화 하는 알고리즘 중 Gradient descent는 경사를 줄이면서 cost가 minimize되는 W와 b를 찾는다. 우리의 데이터를 보아 W값은 1, b값은 0에 가까운 값이 나와야 할 것이다. # Lea..
2020.08.04