인공지능(5)
-
[텐서플로우로 시작하는 딥러닝 기초] Lec 05-1: Logistic Regression/Classification 의 소개
로지스틱 회귀/분류의 개념을 알아보는 시간이다. Logistic regression과 Linear regression의 차이는 무엇일지 궁금하다. 또한 분류라고 하니 이번에는 Unsupervised learning인가?라고 생각되는데 과연 그럴지 알아보자. 강의 목차. 이 강의는 스탠포드 Andrew Ng 교수님의 ML강의와 모두를 위한 딥러닝 강의의 김성훈 교수님의 자료를 토대로 설명한다고 한다. Binary Classification은 예시들처럼 둘 중 하나로 분류가 된다. 그렇기 때문에 1 또는 0의 값을 갖는 학습 데이터가 쓰인다. 그렇다면 우리가 지금까지 배운 Linear regression과 Logistic regression의 차이는 우리가 원하는 출력에 있겠다. Linear regressi..
2020.09.03 -
[텐서플로우로 시작하는 딥러닝 기초] Lab 04: Multi-variable Linear Regression 를 TensorFlow 로 구현하기
아래의 데이타를 사용하여 다중선형회귀를 텐서플로우로 구현해보자. import tensorflow as tf import numpy # data and Label x1 = [73., 93., 89., 96., 73.] x2 = [80., 88., 91., 98., 66.] x3 = [75., 93., 90., 100., 79.] y = [152., 185., 180., 196., 142.] # weights w1 = tf.Variable(tf.random.normal([1])) # [1]은 shape. 1 크기의 난수 w2 = tf.Variable(tf.random.normal([1])) w3 = tf.Variable(tf.random.normal([1])) b = tf.Variable(tf.random...
2020.09.01 -
[텐서플로우로 시작하는 딥러닝 기초] Lab 02: Simple Linear Regression 를 TensorFlow 로 구현하기
import tensorflow as tf x_data = [1, 2, 3, 4, 5] y_data = [1, 2, 3, 4, 5] W = tf.Variable(2.9) b = tf.Variable(0.5) # hypothesis = W*x+b hypothesis = W*x_data+b #cost(W,b) cost = tf.reduce_mean(tf.square(hypothesis - y_data)) reduce_mean 은 평균을 내는 함수인데 reduce는 차원의 감소를 의미한다. cost를 최소화 하는 알고리즘 중 Gradient descent는 경사를 줄이면서 cost가 minimize되는 W와 b를 찾는다. 우리의 데이터를 보아 W값은 1, b값은 0에 가까운 값이 나와야 할 것이다. # Lea..
2020.08.04 -
[텐서플로우로 시작하는 딥러닝 기초] Lec 02: Simple Linear Regression
OSAM 강의에서 이 강의로 넘어오게 된 이유는 아래 글에.. 2020/08/03 - [AI] - [OSAM] 2. Training set과 Test set, Overfitting과 Underfitting Regression Regression 은 정확하게 "Regression toward the mean" - Sir Francis Galton (1822~1911) : 어떤 데이타들이 크거나 작거나 하는 값들이 나와도 전체의 평균으로 회귀하려는 특징이 있다는 의미로 통계적 원리를 의미한다. Linear Regression 한 마디로 데이타를 가장 잘 대변하는 직선의 방정식을 찾는 것. 대표적인 예시로는 Predicting exam score : regression. 공부한 시간과 점수의 상관관계가 있겠다..
2020.08.04 -
[OSAM] 2. Training set과 Test set, Overfitting과 Underfitting
Supervised learning : 입력값에 대한 정답을 가지고 연관관계를 찾도록 학습시킨다. 학습 데이터를 Training set과 Test set으로 나누어 이용함에 따라 Training set에서의 overfitting을 방지한다. 학습을 계속 시킬수록 Training set의 정확도는 계속해서 증가할 것이다. 그러나 필요 이상으로 학습되어 Overfitting 될 경우 Test set에서의 정확도는 점점 떨어진다. 대개 Training set : Test set = 8:2 또는 9:1 정도로 한다. 데이터를 Training set과 Test set으로 나눠 사용하면 Test set에 과적합(overfitting) 될 수 있기 때문에 Validation set을 또 나누어 이용하여 모델들의 적정..
2020.08.03