로지스틱(2)
-
[텐서플로우로 시작하는 딥러닝 기초] Lab 05-3: Logistic Regression/Classification 를 TensorFlow로 구현하기
이번 주는 방화지대 공사를 하느라 또 오랜만이다. 낫질과 톱질을 하도 했더니 손가락 마디가 쑤시네.. 이번에는 Logistic Regression을 텐서플로우로 구현해보자! import numpy as np import matplotlib.pyplot as plt import tensorflow as tf tf.random.set_seed(1106) # for reproducibility x_train = [[1., 2.], [2., 3.], [3., 1.], [4., 3.], [5., 3.], [6., 2.]] y_train = [[0.], [0.], [0.], [1.], [1.], [1.]] x_test = [[5.,2.]] y_test = [[1.]] x1 = [x[0] for x in x_trai..
2020.10.24 -
[텐서플로우로 시작하는 딥러닝 기초] Lec 05-2: Logistic Regression/Classification 의 cost 함수, 최소화
로지스틱 회귀의 전체적인 흐름에 대해 알아봤다. 그렇다면 Regression에서 정말 중요한 cost함수는 어떻게 생겼을까? 처음에 가설에서 Weight는 랜덤 하게 설정했을 경우, 좌측의 모델처럼 다양한 경우의 모습을 보인다. 우리의 목적은 우측의 그림처럼 두 가지 그룹을 나누는 모델이다. 그동안의 강의에서 배운 것과 마찬가지로 Cost function은 Label과 Hypothesis의 차이일 텐데 여기서 문제가 있다. 우리의 Hypothesis는 Sigmoid 함수로 곡선의 형태를 띄고 있고, Label값들은 이상적인 1과 0의 값을 가지기 때문에 둘의 차는 구불구불해진다. 그래서 y=1, y=0인 두 경우의 Label에서 log함수를 이용해 우리가 원하는 cost function의 형태를 만든다...
2020.09.07