softmax(3)
-
[텐서플로우로 시작하는 딥러닝 기초] Lab 06-1: Softmax classifier 를 TensorFlow 로 구현하기
import tensorflow as tf import numpy as np print(tf.__version__) tf.random.set_seed(777) # for reproducibility x_data = [[1, 2, 1, 1], [2, 1, 3, 2], [3, 1, 3, 4], [4, 1, 5, 5], [1, 7, 5, 5], [1, 2, 5, 6], [1, 6, 6, 6], [1, 7, 7, 7]] y_data = [[0, 0, 1], [0, 0, 1], [0, 0, 1], [0, 1, 0], [0, 1, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0]] #convert into numpy and float format x_data = np.asarray(x_data, dt..
2020.12.05 -
[텐서플로우로 시작하는 딥러닝 기초] Lec 06-2: Softmax Classifier의 cost함수
저번 강의에 이어서 세 개의 다중 분류를 하려고 보니. Binary Classification을 세 번 하면 되니까. 각각의 Label에 대한 가중치를 행렬로 묶어서 한 번에 계산했다. 그래서 각각의 Hypothesis는 하나의 Hypothesis 처럼 보이고. 여기에 어떤 x 값(test set)을 넣으면 우리의 Hypothesis는 A, B, C에 대한 결과 값을 Weight에 따라 벡터의 형태로 출력할 것이다. 근데 우리가 원하는건 그래서 결과가 뭔데?이다. Binary에서는 Sigmoid를 이용해 출력 값을 0~1의 값으로 만들었는데, Multinomial에서는 다른 함수를 사용해서 다수의 출력을 각각 0~1, 합이 1이 되게 만든다. 이를 위한 함수가 Softmax이다. 사실 아주 단순하다. n..
2020.11.11 -
[텐서플로우로 시작하는 딥러닝 기초] Lec 06-1: Softmax Regression: 기본 개념소개
Binary Logistic Classification을 배웠다. 그럼 3개 이상의 Multinomial Classification은 어떻게 할까? 간단하다. 3번 binary classification을 하면 된다. 근데 그러면 Hypothesis 세우기가 귀찮으니 그냥 Matrix를 이용해서 한 번에 하자는 게 이번 강의의 내용. Lec 04: Multi-variable Linear Regression 와 흐름이 매우 비슷하다. 여기에 Sigmoid를 어떻게 하는지는 다음 강의에서.. (Softmax classification이 Multinomial classification인가 보다..)
2020.10.29